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Abstract:  

Reducing the time spent to generate accurate weather forecasts will produce significant 
value for Naval forces (Ballas, 2001). Forecasters rely on deterministic models (Palmer, 2000), a 
problem when forecast uncertainty increases. This solution bias is less of a concern during fair 
weather. But as weather warnings increase, collaboration has been found to counter solution bias 
to improve weather forecasts and air traffic flow for commercial carriers (Nadler, 2000). Naval 
forces collaborate over weather products, too, but often ad hoc. This research addresses the value 
of collaboration for weather forecasts in the fleet and social computational models to improve 
collaboration.  
Background: 

Traditional artificial intelligence (AI), game, or social learning theories offer little practical 
guidance to improve collaboration. Rational theories, constructed and applied from an individual 
perspective (Luce & Raiffa, 1967), have been unable to predict decision-making outcomes (e.g., 
Klein, 1999). While many scientific facts have been discovered for both individual and group 
processes, such as cooperation (Axelrod, 1984), bargaining, and non-cooperation (Nash, 1950, 
1951), fitting these facts into a theory of individual and social processes remains the defining 
problem in social science (e.g., Allport, 1962). The problem has been attributed to the difference 
between individual and group observations (Levine & Moreland, 1998), to an interaction between 
perceived and actual behavior (Cook, 1994), and to finding that survey questions can be phrased 
to produce any desired effect (Eagly, & Chaiken, 1993).  

Arguably, artificial intelligence is representative of the best of approaches in rational 
decision-making. However, the Naval Studies Board (NSB, 2000) concluded that methods 
developed in the field of artificial intelligence, including commonsense reasoning, non-monotonic 
logic, circumspection, algorithms used in neural networks, and extensions to Bayesian calculi, 
have largely failed to provide the understanding required to extract information from large data 
sets, to reason in the face of uncertainty and to fuse information from disparate sources. 
Regarding game theory, Simon (1996, p. 38) stated that its “most valuable contribution has been 
to show that rationality is effectively undefinable” for agents with unlimited computational 
capability. To overcome these limitations in the field at the individual level, weather forecasters 
must interpret model predictions to improve forecast accuracy (Palmer, 2000). From what little is 
known, forecasters visually extract information, I, from large, multiple data sets to construct 
qualitative models as they integrate I to brief aviators (Trafton et al., 2000, p. 827).  

Even less is known about decision-making in groups, although it is common in democratic 
societies (Arrow, 1970). Yet the evidence for collaboration indicates that the end products of 
group decision-making in the field are superior (see Nadler, 1998, for weather products; Lawless, 
Castelao, & Ballas, 2000, for environmental remediation decisions). In the laboratory, group 
decision-making methods have been applied to artificial agents with majority (e.g., Lam & Suen, 
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1997), consensus (Hannebauer, in Tessier et al., 2001), and cost-based collaboration rules planned 
for the reactive closed loop sensor-shooter of the next AEGIS upgrade (Laddaga, 1998).  

The goal of individual rational logic is to produce a consensus, characterized by a lack of 
disagreement (Popper, 1992). Current perspectives of computational autonomy are built on a 
consensus view of a reality, R, that is stable.  However, the evidence indicates that consensus 
decisions are too slow for multiple agent systems (Hannebauer, in Tessier et al., 2001), produce 
suboptimal decisions for humans (Lawless, Castelao, & Abubucker, 2000a), and generate conflict 
(Lawless et al., 2000b). After observing his operational system of artificial agents (Pynadath, 
Scerri  & Tambe, 2001), Tambe concluded that computational autonomy is currently not feasible.  

The traditional method in social science was derived from Campbell to establish construct 
validity based on a convergence of evidence from stable R. However, Campbell (1996) rejected 
his own method of data convergence before his death. He had argued that his method 
marginalized contradictory evidence. The lack of supporting evidence for consensus decision-
making coupled with Campbell’s rejection has opened the way for a view of bistable reality first 
put forth by Bohr (1955), which Von Neumann believed could overturn traditional rationality 
(Von Neumann & Morgenstern, 1953, p. 147-8). Bistability is difficult to understand because 
human meaning also relies on convergence (e.g., Anderson, 1993). But the value of a model is 
determined by its predictions, not its capability to explain (Hawking, in Penrose, 1997). Bohr’s 
model accounts for the common presence of competition and disagreement in science, law, and 
between cultures. Further, by definition, autonomy precludes a shared view of R. We have 
concluded that adversarial collaboration as a competition of ideas is integral to how human 
groups process I to solve ill-defined problems (Lawless & Castelao, 2001).  

The interaction produces interdependent I from the fundamental behaviors of action and 
observation. Consequently, any model of the interaction must account for complementary or 
bistable aspects of R, such as framing (Tversky & Kahneman, 1981). Measurements like self-
reports lose significant I as behavior and self-interests interact (e.g., the reluctance of air traffic 
flow managers to disclose justifications for their decisions; in Nadler, 1998). Because humans can 
focus on only one bistable aspect of R at a time (Cacioppo, Berntson & Crites, 1996), beliefs in 
bistable R easily separate into incommensurable beliefs (e.g., Israeli-Palestinian), forming 
communication barriers. By breaking through barriers to produce shared imagery, collaboration 
facilitates the solution of problems (e.g., Trafton, Trickett, & Mintz, submitted). We have 
postulated that an interdependent tension between groups with opposing beliefs acts as an I 
processor that increases the likelihood of solving an ill-defined problem (Lawless et al., 2000b). 

Given action, ∆a, and observational uncertainty, ∆I (where I = ∑x p(x) log2 p(x), and p(x) is 
the probability of state x), the interdependent uncertainty relation becomes 

∆a∆I ≈ c.        (1) 
As an inverse relationship, Equation (1) indicates that the maximum uncertainty in one factor 
occurs when the uncertainty in the other is at a minimum. Not knowing c, the quantum of social 
action, a solution for Equation (1) requires the use of boundary conditions: e.g., as ∆I -> 0, ∆a -> 
∞ (e.g., ideology).  Support came from an experiment with Air Force combat pilots. In this field 
study, air combat performance was found not to be associated with scores from a written 
examination of air combat maneuvers (Lawless, Castelao, & Ballas, 2000).  

Reversing boundary conditions for Equation (1) leads to a counterintuitive prediction: as ∆I 
-> ∞, ∆a -> 0; i.e., the solution to ill-defined problems occurs by bringing incommensurable 
views together before neutral observers to reduce the certainty in each belief with a “competition 
of ideas”, contradicting Nash (1950). This result occurs often in a democracy: courtroom conflict 



  

between adversarial interests, opposing viewpoints in scientific journals, and foils in the theater to 
illuminate the character of a “hero”.  From a field study, a comparison of environmental 
remediation decisions at the Department of Energy’s Savannah River Site in South Carolina 
versus its Hanford Site in Washington, and the Citizen Advisory Boards at both sites, indicated 
that a competition of ideas between opposing viewpoints led to better environmental results than 
cooperation under consensus rules designed to promote a single worldview (Lawless, Castelao, & 
Ballas, 2000). This boundary condition suggests not only that orthogonal social operators 
(adversarial advocates) are fundamental mechanisms employed by social organisms to process I 
and make decisions (Tessier et al., 2000, p. 24-26), but also that computational Decision Centers 
(DC) may be progenitors of social autonomy (Lawless & Castelao, 2001).  

The initial plan was to compare collaboration among METOC forecasters. Because of 
limited data available for METOC, the method expanded to include forecasting in commercial 
aviation.  
Results:  
1. METOC Collaboration data was collected from fleet exercises in July 1997 (Ballas, 2001). Six 
sessions were held of varying lengths and numbers of participants with both increasing in later 
sessions. Overall, an average of 74.3 messages were sent per session; the average number of 
weather statements were 10.7, with an average number of 5.3 shared agreements and 0.63 
disagreements per session. However, there were no subjective or objective data collected to test 
the usefulness of collaboration in METOC.  
2. Delays in commercial aviation due to weather are the most disruptive force in the National 
Airspace System. The Collaborative Convective Forecast Product (CCFP) seeks to reduce these 
disruptions with a more accurate forecast (FAA, 2001). It is generated four times a day beginning 
with the First Guess (FG) Forecast made by the Aviation Weather Center (AWC) with input from 
its own and participating airline meteorologists, Center Weather Service Units (CWSU), and staff 
at the FAA Air Traffic Control System Command Center (ATCSCC). Its goal is to create a 
common situational awareness of convective weather. It provides a timely review of weather 
activity, and traffic flow coordination during severe weather. The CCFP does not use consensus 
decision-making because of time constraints and the need for single accountability with weather 
related decisions. It begins when an FG forecast made by AWC meteorologists drawing upon 
numerical predictions is submitted to a web chat room for a 30 minute moderated discussion that, 
after incorporating feedback, ends with the generation of a final forecast graphic published on the 
web. If CCFP forecasts predict severe weather, playbooks are implemented to reroute air traffic. 
During its development, Nadler (1998) found substantial endorsement for the CCFP among 
participants. Based on 16 forecasts, 88.9% of respondents agreed or strongly agreed that 
forecasted convection areas were close to where convection actually occurred; 85.2% agreed or 
strongly agreed that the CCFP forecasts improved during the thunderstorm season; and 92.6% 
agreed or strongly agreed that the CCFP was a good planning tool.  
3. In the next thunderstorm season, Browne, Phaneuf and Nestoros, (1999) reported that the 
CCFP was produced by an average of 15.16 collaboration participants (16.71 morning, 14.34 
afternoon) through an average number of 19.63 messages (21.07 morning, 17.97 afternoon), 
resulting in an average of 6.46  CCFP iterations (6.58 morning, 5.97 afternoon). These products 
were generated with an average of 5.76 expressed agreements (6.16 morning, 5.06 afternoon), 
9.21 default agreements (9.45 morning, 8.93 afternoon), and an average of 0.52 expressed 
disagreements (0.45 morning, 0.23 afternoon). The discussions averaged 49.83 minutes (47.58 



  

morning, 53.45 afternoon). Over 57% of respondents agreed or strongly agreed that the CCFP 
was useful for planning purposes, and 79% agreed or strongly agreed that the CCFP was accurate.  
4. Based on forecasts from 1 June to 31August 1999, a more objective test of the CCFP was 
conducted by the Forecast System Laboratory’s (FSL) Real Time Verification System (RTVS). 
The RTVS data (Mahoney et al., 2000) are summarized in Table 1 below.  
 
Table 1. In this table, better forecasts have a lower convective area covered by the forecast, a 
greater PODy, a lower FAR, and a Bias closer to one (bias greater than one over-predicts 
convection; less than one under-predicts). [SIGMET is significant meteorological information; 
NCWF is the automated computer generated numerical prediction; POD-y is the probability of a 
forecast being observed = Y(forecast)Y(observed)/(YY+NY); FAR is the false alarm ratio = 
YN/(YY+YN); and Bias is the tendency to over or under predict convection = 
(YY+YN)/(YY+NY).]  
 

Product Issued 
(UTC) 

Forecast 
Length 

Human/ 
Automated 

Average % 
area covered 
by Forecast 

Average 
PODy 

FAR Bias 

        
CCFP 1500, 

1900 
1,3,5 and 
3,5,7 h 

H 5.2% .28 .84 1.9 

Convective 
SIGMET 

Hourly 1,2 and 0-2 
h 

H 2.3% .28 .70 1.0 

SIGMET 
Outlook 

Hourly 2-6 h and 6 
h 

H 14.9% .04 .92 6.1 

NCWF 5 min 1 and 2 h A 0.5% .09 .41 .10 
 
5. FSL did not test whether commercial air traffic improved. From data published by the 
Department of Transportation (DOT, 2001) for May through July 2000 and 2001, flight delays 
improved approximately 6% (also, PBS, 2001).  
6. CDM forecasts were not significantly different from the convective forecasts of individual 
experts; but as a trade-off for greater passenger comfort, collaborative forecasts provided larger 
safety margins than individual experts. However, a closer look found significant disagreement 
among successful collaborators in environmental remediation and virtually no disagreement 
among collaborative forecasters.  
Conclusion.  

The surveys demonstrated strong subjective support for CCFP products. Probably the 
comparatively larger areas reflected in the CCFP represented a preference by airline participants 
to avoid areas around thunderstorms (e.g., severe turbulence, icing, hail). However, the objective 
RTVS tests found that although the CCFP was much better than numerical models, which 
significantly underreported convection, both products pointed to the difficult nature of forecasting 
during unstable conditions (Palmer, 1999). In contrast to isolated convection, the more defined a 
line of thunderstorms or longer lived an individual storm, the easier it was to predict. In turn, 
RTVS overlooked the increased uncertainty that occurs for human users of automated systems 
(Helmreich, 1997). Thus, a better understanding of the automated products that were used by 
collaborators is reflected in greater endorsement and a subsequent improvement in on-time flight 
arrivals. However, one area for future exploration is the low levels of disagreement among 



  

forecasters during collaboration. Because higher levels of disagreement improved the value of 
collaboration for environmental remediation decisions, a future study should analyze varying 
levels of disagreement during collaboration on METOC products.  

Clearly the assumption that collaboration improves with cooperation is problematic (e.g., 
Axelrod, 1984). In our research, we have found that the best decision-making occurs in DC’s 
which combine cooperation with a competition of ideas to solve problems. Instead of interference, 
information processing from adversarial collaboration produces shared views. But for 
collaboration to work, research must address the degree of agent reactivity sufficient to draw 
acceptable comparisons and to overcome the barriers of communication between agents and 
groups without promoting either “social loafing” or the conflict that breaks down communication.  
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